The Signaling Peptide EPF2 Controls Asymmetric Cell Divisions during Stomatal Development

نویسندگان

  • Lee Hunt
  • Julie E. Gray
چکیده

Stomata are pores in the plant epidermis that control carbon dioxide uptake and water loss. They are major regulators of global carbon and water cycles [1]. Several signaling components that regulate stomatal development have been characterized. These include a putative secretory peptide EPF1, LRR receptor components TMM and ER, and a peptidase SDD1 [2-4]. We have identified EPF2, a peptide related to EPF1 that is expressed in proliferating cells of the stomatal lineage, known as meristemoids, and in guard mother cells, the progenitors of stomata. EPF2 expression during leaf development affects stomatal density on the mature leaf. In the absence of EPF2, excessive numbers of cells enter the stomatal lineage and produce numerous small epidermal cells that express stomatal lineage reporter genes, whereas plants overexpressing EPF2 produce virtually no stomata. Results from genetic experiments indicate that EPF2 regulates a different aspect of stomatal development to EPF1 and are consistent with EPF2 acting in a pathway to regulate stomatal density that involves ER and TMM, but not SDD1. We propose that EPF2 is expressed earlier in leaf development than EPF1 and is involved in determining the number of cells that enter, and remain in, the stomatal lineage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of stomatal distribution on the Arabidopsis leaf surface.

Stomata regulate gas exchange and are distributed across the leaf epidermis with characteristic spacing. Arabidopsis stomata are produced by asymmetric cell divisions. Mutations in the gene TOO MANY MOUTHS (TMM) disrupt patterning by randomizing the plane of formative asymmetric divisions and by permitting ectopic divisions. TMM encodes a leucine-rich repeat-containing receptor-like protein exp...

متن کامل

Stomatal development in Arabidopsis.

Stomata consist of two guard cells around a pore and act as turgor-operated valves for gas exchange. Arabidopsis stomata develop from one or more asymmetric divisions followed by the symmetric division of the guard mother cell. Stomatal number is partly a function of the availability of smaller epidermal cells that are competent to divide asymmetrically. Stomata are spaced apart from each other...

متن کامل

Signaling to stomatal initiation and cell division

Stomata are two-celled valves that control epidermal pores whose opening and spacing optimizes shoot-atmosphere gas exchange. Arabidopsis stomatal formation involves at least one asymmetric division and one symmetric division. Stomatal formation and patterning are regulated by the frequency and placement of asymmetric divisions. This model system has already led to significant advances in devel...

متن کامل

Direct interaction of ligand-receptor pairs specifying stomatal patterning.

Valves on the plant epidermis called stomata develop according to positional cues, which likely involve putative ligands (EPIDERMAL PATTERNING FACTORS [EPFs]) and putative receptors (ERECTA family receptor kinases and TOO MANY MOUTHS [TMM]) in Arabidopsis. Here we report the direct, robust, and saturable binding of bioactive EPF peptides to the ERECTA family. In contrast, TMM exhibits negligibl...

متن کامل

Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis.

Stomata are specialized epidermal structures that regulate gas (CO(2) and O(2)) and water vapor exchange between plants and their environment. In Arabidopsis thaliana, stomatal development is preceded by asymmetric cell divisions, and stomatal distribution follows the one-cell spacing rule, reflecting the coordination of cell fate specification. Stomatal development and patterning are regulated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2009